Summary of 4_Default_Xgboost
<< Go back
Extreme Gradient Boosting (Xgboost)
- objective: reg:squarederror
- eval_metric: rmse
- eta: 0.075
- max_depth: 6
- min_child_weight: 1
- subsample: 1.0
- colsample_bytree: 1.0
- explain_level: 2
Validation
- validation_type: split
- train_ratio: 0.75
- shuffle: True
Optimized metric
rmse
Training time
11.0 seconds
Metric details:
Metric |
Score |
MAE |
11.8516 |
MSE |
3592.08 |
RMSE |
59.9339 |
R2 |
0.834553 |
Learning curves
Permutation-based Importance
SHAP Importance
SHAP Dependence plots
Dependence (Fold 1)
SHAP Decision plots
Top-10 Worst decisions (Fold 1)
Top-10 Best decisions (Fold 1)
<< Go back